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ON THE ROTATIONAL NOTION OF A SOLID CARRYING A VISCO-ELASTIC DISC IN 
A CENTRAL FIELD OF FORCE* 

N.E. BQLOTINA, V.G. VIL'KE and YU.G. MARKOV 

The motion of a mechanical system consisting of a symmetrical solid and a 
round plate (disc) located in the equatorial plane of the ellipsoid of 
inertial of the solid is considered. It is assumed that the centreofmassof 
the system moves in a circular orbit in a Newtonian field of force. The 
disc flexural deformation, accompanied by the dissipation of energy, are 
the cause of the development of rotational motion in the system. Approxi- 
mate equations that define this development are obtained, using the method 
of motion separation and of averaging /l-3/. The averaged equations that 
define the evolution in Andoyer variables are similar to the equations 
that describe the evolution of motions of a satellite with flexible visco- 
elastic rods located along the axis of symmetry of the satellite /3/. 

Letthesystem of equations CZ,X~X, be rigidly attached to a symmetric solid Cx, is the 
axis of symmetry), and let a disc be located in the plane CRUX,. The radius vector of any 
point on the disc is defined by 

r = w1 4 x3e2 + m3, xl = r ~09 8, 5, = rsin e 

0 g r g U, 0 < e < zn, (x,, XJ E (;1 = (32 + xsp"< a2} 
(1) 

where w(r, 8,t) is the displacement of points of the elastic disc along the axis cs, during 
bending, e, (i = 1, 2, 3) is the unit vector of the axis Cxf, and r,8 are the polar coordinates 
in the region Q. 

Consider the problem when the centre of mass C describes around the attracting centre 0 
a circular Keplerian orbit of radius R and the bending oscillations of the disc do not affect 
its motion. We introduce the system of coordinates C&$,&, moving translationally, and the 

cg, axis is orthogonal to the plane of the orbit. The radius vector of the centre of 
attraction has in system C&f& the projections (R cos o&R sin a&O), where o. is the orbital 
angular velocity. Let p be the gravitational constant of the Newtonian field; then o,,% = 

pR-3. 
We will henceforth assume that the description of the deformed state of the disc conforms 

to the usual assumptions of the linear theory of small deflections of thin plates. In 
particular, when considering the deflection of a disc of constant rigidity D, the potential 
energy functionals of elastic deformations and of dissipative forces are defined by the 
formulae /4/ 

where A is the Laplace operator, D is the bending rigidity of the disc, and E,v are the 
modulus of elasticity and Poisson's ratio of the material, respectively, h is the disc thick- 
ness, assumed constant, and "/, is a coefficient that takes into account the dissipation of 
energy of deformation. The region of definition of the above functionals (2) is the Sobolev 
space w,"(Q). The second relation in (2) assumes that the dissipative functional D [w'l is 
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proportional to the potential energy of the elastic deformation, if in the latter the components 
of the small-deformation tensor are replaced by the corresponding components of the defonnation- 
velocity tensor. 

For the variables that define the perturbed motion of the system we select the canonical 
Andoyex variables It, qk(k = 1, 2, 3) /3/. When constructing the averaged equations it is con- 
venient to use the Routh functional R, I~,I+I, w', w] and the corresponding Routh Eq.(2). 

Ik*=..-.. V,,R,, s*= Vz,R, (k- I, 2, 31 (3) 

&&V,R, - V.&=-Qm 

where V is the gradient ofthefunctional R, with respect to the corresponding variable, and 

Q40 are dissipative forces. Usually QfB = -V,D [w*a’f , where D [w'l is the dissipative 
functional defined in (2). The Rout& functional in Andoyer variables has the form 

R,=+(G - G,, J-i[w] (G - G,)) - -& 
1 

w’=pdx + KI [w] + E[w], dz= d.c~dzz (4) 

where II !w] is the potential of the graviation forces and of the forces of inertia of the 
transfer motion acting on points of the system, and 

II= - j {[R + o(r f w)]*}-'A~pdz - -&o' 
V 0 

[R+O(r+w)l'~d~ (5) 

where V is the region occupied by the solid and disc w =u+. When integration is carried 
out with respect to points ofthesolid, then w ~0 and p is the density of the solid, and in 
the integration over the region 8 occupied by the disc w+O and p is the disc density. 

The inertia tensor of the system in the coordinate system &s~x,x, has the form 

J rutI = $0 + J, [WI + J, [WI 

Ja = diag {A, A, C}, J, [wl= II J#) II 

J&) = J1,(l) = Jsl(l) = 0, i = 1, 2, 3 

J:l,)=J~=-SSpwr2COSedrd0 

J$=J$)=- {SpwrPsinBdrdO 
P 

where J,fwl and J%fwl are the components of the inertia tensor, linear and quadratic in w 
We will henceforth represent Jfw] in the form 

J” fw] = Jo4 - J,-lJ, fwfJ,-’ + . . . (6) 

and confine ourselves in series (6) to the first two terms. 
The orthogonal matrix o(t)e SO (3) in II which determinesthetransition from the 

system of coordinates Cx,z,x, to that of Koenig coordinates C&&, and the vector of the 
angular momentum G is expressed in terms of Andoyer variables 

G,=&(r+w)x w')prdrd8=SpS(rxn')frdrd8 
P 

0 (t) = rs (cp$ rl (8d rs (cpa) ri (&I r8 (Vi) 

i 

10 0 

, rl@f= 0 COSS --inB 
0 sin@ ooss 

Since R>> I? -k W 1, the integrand of the first integral (5) can be expanded in series. 
Limiting the series to quadratic terms in lr+wlR-', taking into account pR_5 = wag and 
neglecting unimportant constants, we obtain 

rI zz -.&Q (O-‘R“, r + w)*pdx, R”= + 
$ 

(7) 

In the system of coordinates Cx+,ss the components of the vector O-lRa(y,, yz, 7s) are /3/ 

yI = (009 a co9 (PI + sin a co9 6, sin (pg) 00s ‘p1 + 
[(--co9 a sin rp, + sin a cos 6, co9 cpa) Co9 6, - 

ain a sin 6, sin S,l sin rp, 
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ya = -(co9 a cos qa + sin a cos 6, sin qe) sin ‘pl + 
[(--co5 a sin ‘pz + sin a cos 6, co9 cpa) co9 6, - 

sin a sin 6, sin 6,l cos ‘pl 

yr = (co9 a sin va - sin a co9 6, co9 rpB) sin 6, - 

sin a sin h1 co9 6, 

co9 8, = I,lI,, cos 6, = IJI,, a = o,t - pS 

The second equation of system (3) is the differential equation of bending oscillations 
of the disc, which can be represented in the form 

+ (G - G,, V,P [w] (G - G,)) -3m& (0-IR”, r + w) (0-IR”, es) = 0 

It is necessary to supplement (8) by the boundary conditions of the problem which follow 

from the expression for the variation of the potential energy of the elastic deformations of 

the disc (2) /4/ 

(9) 

Here M,, ikf,e are the bending moment and torque, respectively, andN,is transverse force, 

which on the disc contour have the form 

M,e=D(1- v)-&i+$), N,=-Dv 

For rigid fastening the disc edges, the variations 6w and 6(aw/&) are zero and the 

contour integrals in (9) vanish. The boundary conditions in that case have the simple form 

wIr-=O, g- _=o 

The first condition showsthatthediscedgesdo not have a vertical displacement on 

deformation, and the second that the slope of the bent surface of the disc at the edge is zero. 

The problem considered here contains a "large" parameter that is a characteristic of the 

rigidity of an elastic disc (thediscrigidityis assumedtobelarge anditstransversedeformations 

small). In the limit when the rigidity is infinitely large, the bending deformations of the 

disc are zero (~30) and if we set the second small parameter, the angular velocity of the 

orbital system of coordinates mO, equal to zero, the motion of the system becomes a regular 

precession, since then the solid obtained is symmetric (A = B#C). We assume the motion to 

be unperturbed. The Routh function and the canonical equations of motion of the solid in 

Andoyer variables have the form 

I*2 - rp 
RI, = 2A 

Ita 
+TiFy Ii.10 (i= 1, 2, 3) 

. A-C 
'pl = TII, q2*+.$ 'ps'=O 

(11) 

According to the method of separation of motions it is necessary to find the solution 
of (8) with the condition that the canonical Andoyer variables correspond to the unperturbed 

problem (11). We will seek this solution in the form of a series in the small parameter 
s=D-' 

w= ew,+e%D*+ . . . (12) 

It is sufficient to determine w1 since subsequently we propose applying the method of 

averaging to Eqs.(3) /2/. We will seek the function wr(r, t) in the form 

w1 (r, t) = 2 (- x)” d”y;, t) 
n=ll 

(13) 

where wl,(i,t) is the solution of (8) when x = 0 and with the condition for preserving the 

terms in accordance with (11) that contain the small parameter .s to the zeroth power. We 

have 

MWUI + p (Ji’G’ x r) es - + (J;k, V,Jl [w] J;‘G) - (14) 

3&9 (O-‘R”, r) (O-IR”, es) = 0 

IJote that 
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p (&W x r) Ed - + (GIG, V,Ji [w] &‘G) = 

g(rsincpiCOS0 + tCOScpiSin8), 

g = pi-v-1 (2A - C) Ii T/I~* - IIs 

As the result Eq.(14) takes the form 

AAw,, = g, (t) r cos 0 + g, (t) r sin 0 

gl 0) = -_g Sin cpi + 3%*PYCh ga PI = -_g CO9 ‘Pi + 3%‘PYaY* 

By satisfying the boundary conditions (lo), we obtain its solution in the form /5/ 

Wio = 
r (d - r*p 

192 (gi(t)cos 8 + gz(t) sin e) (15) 

The convergence of series (13) depends on xcp', where q'= max ( 1 'pr' I, 1 'ps' 1. 00). Assuming 
the quantity I(p' to be fairly small, (XT,'< 1) t and seeking to obtain qualitative results, 
we limit (13) to the first two terms, assuming 

w1 (C, t) = %l (r, t) - xw,,' (r, t) (16) 

By taking the displacements ~,(r,t) in (3), we obtain the following equations for the 
perturbed problem: 

Il' = - V,R, = - (J-l [w] (G - G,), 2) + 

3oo* [ (-4 - Cl Ys -$ + !j S re ho - XWio’) & (ylyl cOs 8 + 
a 

ySyz sin e) pr dr de 

zz’=-vqJt*=30$ (A-C)y,$ + 
[ 

ss a 
rs ho - Wio') & (~8~1 cos e + y8yz sin e) pr dr de] 

. 
13 =-V&*=-3m? [ 

avr (A-c)yJx + 

ss rs (mo - wl0’) 4 (YSYI cos e + ysyz sin e) pr dr de 
P 1 

Let us average the right sides of (17) over the fast angular variables 'P1, (Pa, a. The 
averaged equations are very cumbersome and are difficult to analyse. However, the varaibles 
"action" evolve at different velocities. The right side of the first equation of (17) contains, 
after averaging termsproportional to xe and Leo o*, while the lasttwo equationsof (17) contain 
terms proportionalto Xeooa. Ifo, is fairly small, the evolution oftheaction variables can be 
divided into two stages. In the first stage of "rapid" evolution of the variables we assume 
o. = 0. This means that in the evolution process,the variables I, and Ia are constant, and only 
the variable 1, changes. At the second stage of slow evoltuion we assume that the rapid evol- 
ution has been completed(the variable I1 takes its limit values), and only the evolution of the 
variables Za and Ia is considered. Assuming that in (17) mea = 0 (the system moves by inertia), 
we obtain for the variable I1 the equation 

II’ = - V,,R, = - (F[w] (G - G,), $) 

where the accuracy of small E? we have 

(18) 

(J-‘[w](G -G,), $+(rfG. $) - 

( &lJl [w] &‘G, E) - (jj [r x w'] pr dr de, A?-$) 

Denoting the averaging over the angles ml,a by the symbol <.), from (18) we obtain 

II' = A%-‘I1 frz” - Zla (J$cos ‘pl - Jg) sin ml) + 419) 

pA-'1/Q- 112 ' 
\\S 

w’ rslncp,cose+rcoscp,sinB)rdrde 
( . > 

81121 

( * h,. a = (%I)-~ 1 1 .dqlda 
0 0 

Averaging of the right-hand side of (19), we obtain 
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Ii = - nlZ1' (Zz' - Zi’), i(20) 

The sign of n, is the same as that of A - C. When A > C,Z, approaches zero, and when 
A<CI, approaches I,. This means that regular precession ends in rotation around the 
angular vector, which lies either in the equatorial plane of the ellipsoid of inertia or co- 
incides with its axis of inertia. 

We will consider the case when A >C, and we will determine the evolution of the variables 
I* and I,. In accordance with the above, we assume the evolution of the variable I, to be _ 
completed and set II = 0. The remaining two equations of system (17) now take the form 

b.=9w$p’pe<f:[y*yi--X~(~.yi)]~(y~yi)> 

i=l 

(21) 

In Eqs . (21) averaging 

When calculating 
ing of the right-hand 

is 

Tl 

carried out over the variables 9% and a,and the yt when I, = 0, are 

= cos a cos a + sin a co9 6, sin cp,, yla = -sin a sin 6, (22) 
y, = co9 a sin ‘pI - sin a co9 tpn co8 6X 

(22) 'pr was taken as zero, which does not affect the generality. Averag- 
sides of Eqs.(21) yields 

II' = --n, I8Ao@ZJ,-1 - 4Z* (1 + z,~Z,-yl (23) 

I,’ = n, [Au,, (5 + 6ZS’ZS-” - 3Z,‘Z,-‘) - 8Z11 

n, = (Vl.)o,‘pypsA-’ > 0 

Equating the right-hand sides of (23) to zero, wer obtain the stationary points that are 
solutions corresponding to constant ZS and I,. We have 

3A6 - 3h’ + 5hB - 5 = 0, h = Z,Z,‘, 1 a 1 < 1 (24) 

When Ih I\< 1 this equation has a unique solution h = 1, corresponding to the steady 
solution I,= I, = Aa,, which defines the uniform rotation of the system with angular velocity 
oO about the axis Cg,. The stability of this steady point follows fromtheequations in 
variations of the form 

E' = -8n&, q’ = -8n,q, E = I,A-l~o-l - 1, 

q = z&l-‘o,’ - 1 

For steady rotation with I,= I, = Aa, the disc is fixed in the orbital system of co- 
ordinates. To determine its position in the orbital system of coordinates we introduce the 
angle b between the unit vector R@ and the axis of symmetry_ We have 

fi = oat + n/2 - ‘p, - cps 

f3’ = 00 - ‘PI’ - q*’ = a0 - V&R, - v&Z?, 

Vr,R,=(J-l[w](G-GJ, -$-%=[(A--)~a%+ 

V,R, .= - 34 [(A - C) v.3 
P tr;l 

which after calculations gives 

r = -A-1Z, + o. + S/aA-looapBpe [(sin 28)' - x (sin 28)"1 

Since yt = sin f~, ya = 0, ys = cos fi, we have 

Z,’ = */,woz (A - C) sin 28 - Sm,‘p’pe (VP sin 28 - xfl’ co9 28) cos 2fi 

and further 

p" + 9co04pPXpeA-‘fl’ cosa 2s + "/,oo" (A - C) A-l sin 28 = 0 (25) 

where only the principal terms of the corresponding varaibles have been retained. This 

equation implies that when the motion is steady, the angle fi is either {nk}:ZZ_, or {n/2 + 
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sk}kZCW The first set of equilibrium positions is stable (the axis of symmetry of the solid 
and disc coincide with the radius vector of system) , while the second is unstable (the axis 
of symmetry is tangent to the orbit). 

If A (C, the evolution of variable 1, according to (20) leads to 1, = 1,. The evolution 
of the variables 1, and Ia in that case is defined by Eqs.(21) in which 

yr = cos a cos 'p -j- sin a sin cp cos 6,,y, = -Cosu sin 'p + 
sina coscp cos6, 

ys = -sin a sin 6,, cp = mr + (Pa, 50' = IJC 

Averaging Eqs.(Zl) over the angles cp and a gives 

is' = -11* (f,Z - 132) 1*-a 11, (2 + 31**1*-!9 - 4co,I,r*-‘I (26) 

I,’ = -4n, (I*2 - I$) I$-% [I, - co, (1 + I,P1,2)1, ?z* = 2Ac-‘Rj 

The steady solutions of (26) lie on the straight line I, =Iaand the equations in variations 
in the neighbourhood of the point 1, = 1, = f have the form 

E' = --8f-rn, (I - Co,) (% - q), q’ = -81-“n, (I - 2C0,) (% - q) 

I, = I(1 + E), 1, = I(1 + tl) 

and further 

F;' - q' = -8n&oJ;’ (% - q) 

This implies that the steady set 1, = I, is stable. 
This solution corresponds to the rotation of the system around the axis of symmetry which 

coincides with the normal to the orbit and, since the solid is symmetrical, its angular 
velocity may not, generally, be the same as the orbital velocity. The disc is such motion is 
not deformed in the approximation considered above. 

Note that the evolution of the rotational motion of a symmetrical solid with an efastic- 
plastic disc in the equatorial plane of the elliposid of inertia is similar to the evolution 
of a symmetrical solid with elastic-plastic flexible rods situated on the axis of symmetry 
of the solid /3/. 
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